HP Apollo Series 700 Performance Brief November 1992

X-station X11perf Results

Another benchmark that is used to compare X11 performance on X-stations and workstations is
X11iperf. The X11perf benchmark is described in Chapter 5 and the operations covered by
X11Perf are listed in Appendix D.

These results are based on the Beta B.04 release of the software and are subject to change with
the final release of software.

X1lIperf 1.2 benchmark - Overall Results
3000 2798
2500 yas
2214 L
2000 1792
1500
1000
500
0 . .
700/RX 19Mi 700/RX 14Ci/16Ci 700/RX 16Ca/19Ca/1 9Ga DECstaion 3100
Figure 8.2
X11Perf Composite Results
19Mi 14Ci, 16Ci 16Ca, 19Ca DECstation
19Ga 3100
General Graphics 2193 2500 2989 1537
Terminal
Emulation 15533 11577 19601 11498
Window
Management 1466 869 977 852
X Specific
Operations 1900 2291 2513 2512
Table 8.1

Note: Digital Review reports X-station numbers relative to the DECstation 3100 workstation. Results
quoted in that magazine are referred to as DXUP's. This is the ratio of the overall geometric mean of
the X-station to the DEC 3100. DXUP values can be calculated from Figure 8.2 and Table 8.1.

Page 23



HP Apollo Series 700 Performance Brief November 1992

The B.04 Release of the X Server Software

New Features

There are several new features included in the B.04 software release that will have an effect on
the host system as well as the HP 700/RX-station. The features include the ability to run a local
window manager, local terminal emulators and a local user environment.

Use of these features will require additional X-station memory, but will reduce the host system
memory and system resource requirements. The net effect is that a given host computer system
can support more X-stations. The number of X-stations per host system is highly application-
dependent.

X-Station Memory Utilization

The following tables will help to estimate the required X station memory.

Local Window | Kbytes Local Clients ! Kbytes X Server ! Kbytes

Manager ! Needed Needed Needed

TWM?2 392 Hpterm 1126 Monochrome 19Mi 2400
first invocation

MWM 2 1656 Hpterm 324 Mid Range 16Ci 2600
second invocation

VUE/RX 3 2433 Xterm 644 High Performance 2800
first invocation 19Ca, 19Ga

VUE WM 4 2873 Xterm 185
second invocation

1. These results are based on a Beta B.04 release of the software and are subject to change with the final releass of software.

2. Alternate window managers; not used on the X-station if either VUE option is selected.

3. New GUI environment with multiple workspace manager that is similar to HPVue but is not host dependent.

4. The HPVue window manager only runs on the HP 700/RX-station. The other parts of HPVue such as File Manager runs on
the host system.

For example, to run VUE/RX plus 3 HPTERM windows the X-station would require a minimum
amount of memory equal to 2433 (VUE/RX) + 1126 (HPTERM 1st) + 648 (HPTERM 2nd x 2) =
4207 Kbytes. To this number, the X setrver code and memory requirements for the applications
must be added. Therefore, it is recommended that a total of 10 Mbytes of X-station memory be
installed in the HP 700/RX when running local clients.

Page 24



HP Apollo Series 700 Performance Brief November 1992

Chapter 9 - Advanced Optimizing Compilers for
PA-RISC

The Optimization Performance Edge

Compiler optimization technology unlocks the performance potential of the PA-RISC
architecture. The RISC philosophy has fundamentally changed the role of the compiler. As
RISC moves to strike a balance between hardware and software that exploits the best of each
technology, the resulting simple, high-performance instruction set gives the compiler more
opportunity to apply optimizations that dramatically improve performance. In fact, this
opportunity is more of a responsibility. The effectiveness of RISC depends on the compiler's
ability to create the most efficient instruction sequence by appropriately rearranging the program
steps. Without these optimizations, many applications will execute at a performance level far
below their potential.

Indicative of this synergy, PA-RISC depends heavily on the compiler's optimization technology to
maximize performance. The PA-RISC compilers offer the level of optimization sophistication
required to deliver industry-leading RISC performance. As illustrated in Figure 9.2, the
significant performance boost over unoptimized code reflects optimization techniques designed
to extract the performance and efficiency inherent in the PA-RISC architecture. For example, on
the Model 720 the HP-UX 9.0 optimizations increase the SPECmark from 21.6 to 66.5 (207%),
the MIPS rating from 36 to 57 (58%), and the MFLOPS rating from 2.9 to 17.9 (517%).

Optimization Advantage
(] Unoptimized [Z] Optimized
HP Apolio 9000 Model 720
70.0 66.5
80.0 57.0
50.0
40.0 36.0
3001+
e 21.6

200 +— 179
100 +—

0.0 f +

MIPS SPECmark MFLOPS
Figure 9.1

Paae 25



HP Apollo Series 700 Performance Brief November 1992

Advanced Optimization Technology

The PA-RISC compilers implement a comprehensive set of optimizations geared towards
delivering superior performance on a large class of applications running on the PA-RISC
processor. Recent optimizer enhancements include the following:

1.

Improved Instruction Scheduling: The scheduling heuristics were enhanced to enable
the scheduler to generate more optimal schedules, especially systems based on the new
superscalar PA7100 processor.

Improved Register Allocation: The register allocation algorithm was enhanced to
minimize the number of spill instructions generated when the allocator runs out of
machine registers.

Improved Software Pipelining: Numerically intensive applications often have loops that
contain long-latency operations, such as memory accesses and floating-point operations.
The compilers use a scheduling technique called software pipelining that overlaps
operations from multiple loop iterations in order to hide the long latencies.
Enhancements for HP-UX 9.0 include greater integration with register reassociation.

Improved Register Reassociation: This optimization reassociates calculations in array
subscript expressions to produce more candidates for code motion and strength
reduction. Enhancements include increasing the scope beyond just simple innermost
loops, as well as greater integration with software pipelining.

Improved Branch Optimization: Additional branch optimizations were implemented to
minimize the branch penalty along the most frequent path taken. Based upon
information from heuristics used to estimate which branches are taken most often, code
is repositioned so as to eliminate some of these branches.

Profile Based Optimizations: Using an application's execution-profile data, the optimizer
rearranges code to improve the instruction cache locality as well as to reduce the
number of branches taken. Improving the locality of frequently invoked subroutines
results in better utilization of high-speed cache memory.

The continuous enhancement of HP's compilers, in concert with hardware and system software
advancements, results in increased performance for each release.

For example, Figure 9.2 shows performance on a Model 720 for successive releases of HP-UX.
The SPECmark benchmark performance increased approximately by 36% from HP-UX release
8.01 to 8.05. Performance improved by 12% from HP-UX release 8.07 to 9.0 due to optimizer
enhancements.

700

Optimization Progress

{1 Release 8.01 (] Release 8.05/8.07 BB Release 9.0

60.0

50.0

40.0

30.0

20.0 1

10.0 1

0.0

MFLOPS SPECint92 SPECPp92 SPECmark

Figure 9.2
Page 26



HP Apollo Series 700 Performance Brief November 1992

FORTRAN Optimizing Preprocessor

The FORTRAN Optimizing Preprocessor analyzes the program by gathering information about
the use of data and the nature of the control flow in the program. It then uses this information in
conjunction with parameters that describe the machine (such as cache capacity, cache line size,
number of registers) in order to restructure source code to achieve data locality.

For example, one restructuring technique called "blocking" treats array operations as muitiple
operations on blocks of the array, where the size of the block is chosen carefully to match the
machine characteristics. This technique can significantly reduce the number of memory loads
and cache misses. A number of commonly used numerical algorithms, such as matrix
multiplication, benefit substantially from this technique.

Activating Optimizations

The default for PA-RISC compilers is to not optimize your program. Optimizations are activated
by specifying particular command-line options. As the analysis required to optimize programs
requires additional time and space, the PA-RISC compilers support various levels of optimization
for you to control trade-offs between compile-time overhead and code performance
improvements.

Table 9.2 provides a summary of optimization options for the C and FORTRAN compilers. For
further details, see the Reference Manual and Programming Guide for the five programming
languages supported on PA-RISC: C, C++, COBOL, FORTRAN and Pascal.

Table 9.2
C and FORTRAN
Optimization Options Summary

Option Description

+01 Instruction scheduling and a subset of optimizations performed on small
subsections of code.

-O or +02 Includes '+0O1', plus optimizations performed over the entire scope of
each subroutine. This is the generally recommended level for all
modules.

+03 Includes '+02', plus linker optimizations to improve global variable
accesses.

+OP Invokes the FORTRAN Optimizing Preprocessor (as described in
FORTRAN Optimizing Preprocessor).

+| +P Enables profile-based optimizations (as described in Advanced
Optimization Technology).

Page 27



HP Apollo Series 700 Performance Brief November 1992

Compiling and Optimizing for Different PA-RISC Architectures

As the PA7000 architecture of the Series 700 workstations differs slightly from the PA-RISC 1.0
architecture of many of the HP 9000 Series 800 systems, code generation and instruction
scheduling can be optimized for each architecture. The compilers support the following compile-
time options to control these algorithms:

+DS1.0 Instruction scheduling optimized for PA-RISC 1.0.
+DS1.1 Instruction scheduling optimized for PA-RISC 1.1.
+DA1.0 Instruction set of PA-RISC 1.0.
+DA1.1 Instruction set of PA-RISC 1.1.

The default code generated for Series 700 is '+DS1.1 +DA1.1'; and the default code generated
for Series 600/800 is '+DS1.0 +DA1.0'. While code generated with any combination of these
options will run on the Series 700, the reverse is not true. Code for Series 800 systems based on
PA-RISC 1.0 (that is, all models, except the recently introduced 87 models) must be compiled
using the PA-RISC 1.0 instruction set ('+DA1.0").

A system model number can be used instead of the implementation number (that is, ‘+DAB55'
instead of '+DA1.0"). If the program is to be run on one particular target system that is a different
HP9000 model than the system used for compiling, then +DA and +DS should be used with the
target system's model number. If the program is to be run on many models of the HP9000
(including Series 800 systems) then '+DA1.0' can be used to ensure portability and +DS used
with the model number of the fastest hardware system.

Page 28



